Flow injection chemiluminescence immunoassay of microcystin-LR by using PEI-modified magnetic beads as capturer and HRP-functionalized silica nanoparticles as signal amplifier.

نویسندگان

  • Jusheng Lu
  • Wei Wei
  • Lihong Yin
  • Yuepu Pu
  • Songqin Liu
چکیده

A rapid sandwiched immunoassay of microcystin-LR (MC-LR) in water is proposed with flow injection chemiluminescence detection. The magnetic beads (MBs) were first modified with polyethyleneimine (PEI) by acylamide bond between the carboxyl group on the surface of MBs and the primary amine group in PEI, followed by immobilizing of anti-MC-LR (Ab1) onto PEI with glutaraldehyde as linkage. The resulting Ab1 modified MBs captured the target MC-LR in water, reacted with the horseradish peroxidase and anti-MC-LR co-immobilized silica nanoparticles, and were detected with flow injection chemiluminescence. When using PEI/MBs as the carrier of anti-MC-LR, the CL signal was greatly enhanced up to 9-fold compared to that using MBs without PEI modification. The CL signal was further amplified 13-fold when Si/Ab2 was used as the signal probe. Under the optimal conditions, the present immunoassay exhibited a wide quantitative range from 0.02 to 200 μg L(-1) with a detection limit of 0.006 μg L(-1), which was much lower than the WHO provisional guideline limit of 1.0 μg L(-1) for MC-LR in drinking water. The relative standard deviation was 4.8% and the recoveries for the spiked samples ranged from 84% to 115%, which indicated acceptable precision and accuracy for MC-LR. The present method is easier to perform and less time-consuming (the entire analysis process lasted about 40 minutes) and has been applied to the detection of MC-LR in different water samples successfully.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring

A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...

متن کامل

Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring

A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...

متن کامل

A new dual immunoassay for tumor markers based on chemiluminescence signal amplification by magnetic mesoporous silica and enzyme modified gold nanoparticles.

A sensitive dual immunoassay was proposed for the determination of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) based on signal amplification. Monoclonal antibodies immobilized on magnetic mesoporous silica particles (Fe(3)O(4)/SiO(2)) were prepared as the primary probe. Horseradish peroxidase (HRP) labeled antibodies co-coated with HRP on gold nanoparticles (AuNPs) were used as the...

متن کامل

Determination of microcystin-LR in surface water by a magnetic bead-based colorimetric immunoassay using antibody-conjugated gold nanoparticles

Herein we describe the development of a homogeneous competitive colorimetric immunoassay using antigen-functionalized magnetic beads (MBs) and antibody-immobilized gold nanoparticles (AuNPs) combined with the established gold staining method for the determination of microcystin-leucinearginine (MC-LR) in surface water. Solid phase extraction proved to be the most beneficial sample preparation m...

متن کامل

Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier

Background: Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. Objectives: We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 138 5  شماره 

صفحات  -

تاریخ انتشار 2013